ON MULTIPHASE ALGORITHM FOR SINGLE VARIABLE EQUATION USING NEWTON'S CORRECTION METHOD

نویسندگان: ثبت نشده
چکیده مقاله:

This paper brings to light a method based on Multiphase algorithm for single variable equation using Newton's correction. Newton's method is derived through the logarithmic differentiation of polynomial equation. A correction term which enhances the high speed of convergence is hereby introduced. A translation of Newton's method to Total Step and Single Step Methods (T. S. M and S. S. M) respectively, forms the peak of discussion. Our method, so derived, is also discussed in the light of numerical evidence

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Method for Three-parameter Eigenvalue Problems using Newtons method based on Trace Theorem

Atkinson, F. V. ,1972. 'Multiparameter Eigenvalue Problems', (Matrices and compact operators) Academic Press, New York, Vol. 1 Atkinson, F. V. , 1968. 'Multiparameter spectral theory', Bull. Am. Math. Soc. , Vol. 75, pp(1-28) Baruah, A. K. , 1987. 'Estimation of eigen elements in a two-parameter eigen value problem', Ph. D Thesis, Dibrugarh University, Assam. Bindi...

متن کامل

Application of the Kudryashov method and the functional variable method for the complex KdV equation

In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.

متن کامل

Auxiliary equation method for the mKdV equation with variable coefficients

By using solutions of an ordinary differential equation, an auxiliary equation method is described to seek exact solutions of nonlinear evolution equations with variable coefficients. Being concise and straightforward, this method is applied to the mKdV equation with variable coefficients. As a result, new explicit solutions including solitary wave solutions and trigonometric function solutions...

متن کامل

MRI-Based Attenuation Correction for PET/MRI Using Multiphase Level-Set Method.

UNLABELLED Inaccuracy in MR image-based attenuation correction (MR-AC) leads to errors in quantification and the misinterpretation of lesions in brain PET/MRI studies. To resolve this problem, we proposed an improved ultrashort echo time MR-AC method that was based on a multiphase level-set algorithm with main magnetic field (B0) inhomogeneity correction. We also assessed the feasibility of thi...

متن کامل

An Improved Gauss-Newtons Method based Back-propagation Algorithm for Fast Convergence

The present work deals with an improved back-propagation algorithm based on Gauss-Newton numerical optimization method for fast convergence. The steepest descent method is used for the back-propagation. The algorithm is tested using various datasets and compared with the steepest descent back-propagation algorithm. In the system, optimization is carried out using multilayer neural network. The ...

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 3

صفحات  -

تاریخ انتشار 1999-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023